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Motivation
Problems studied in this project
Our contribution

Motivation: The curse of NP-completeness

I Most of the ‘interesting’ combinatorial optimization problems are
NP-complete.

I This means there is almost no hope to find an optimal solution in
polynomial time-unless P = NP.

I Solution: Get as close as possible to the optimal solution; in other
words, compute an approximate solution.
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Motivation
Problems studied in this project
Our contribution

Problems we studied in this project

-The written report will contain the techniques and results of the following
problems we have currently surveyed (partial list).

I Minimum Multiway Cut. ([STOC] Călinescu, Karloff, and Rabani 1998)
I Maximum Cut. ([STOC] Goemans and Williamson 1995)
I Quadratic Programming. ([FOCS] Charikar and Chatziafratis 2017,

Nesterov 1998,)
I Correlation Clustering. ([SODA] Swamy 2004)
I Graph Coloring. (Wigderson 1983)
I Unique Games. ([FOCS] Trevisan 2005,[STOC] Charikar, K. Makarychev,

and Y. Makarychev 2006)
I Numerous variants of graph partitioning and Sparsest Cut. ([STOC]Arora,

Rao, and Vazirani 2004, [KDD] Bourse, Lelarge, and Vojnovic 2014)
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Motivation
Problems studied in this project
Our contribution

Our contribution

I We surveyed quite a wide array of literature in algorithms,
mathematical programming and spectral graph theory.

I Major contribution is empirical evidence of various approximation
algorithms on real world data sets.

I Implementation (and empirical evidence obtained) for:
I Max-Cut SDP
I Derandomized Max-Cut
I LP relaxation of sparsest Cut
I Spectral Algorithm for sparsest cut.
I ARV algorithm for sparsest cut.
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Approximation Algorithm

-Let P be a maximization problem, and let OPT (P) denote the
cost of optimal solution.

Definition 1 (α-approximation algorithm for P).

Algorithm A is an α-approximation algorithm for P if the cost of
the solution obtained using A is at least α.OPT (P), for any
instance of P.

-For a maximization problem, α ≤ 1, and the definition can be
analogously extended to a minimization problem.
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General approach to approximate discrete optimization
problems

I Model an optimization problem exactly as an integer linear
program (ILP). Note that it is NP-hard to solve an ILP.

I Relax the ILP.

I Solve the VP/LP.

I Round the solution to an integer solution.

I Bound the cost of the rounded solution.
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More formally...

I Let P be a maximization problem. Let:

i FRAC(P): The value of the relaxed(convex) solution.
ii OPT(P): The value of the true combinatorial optimum.
iii ROUND(P): The value of the solution obtained by the rounding

algorithm.

I Then, we have that ROUND(P) ≤OPT(P) ≤FRAC(P). (reverse
for a min. problem)

I The goal is then to find an α s.t. ROUND(P) ≥ αFRAC(P).
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Introduction to Max-Cut Problem
Max-Cut SDP
A deterministic 0.5 Approximation algorithm
Our results

Max-Cut Problem

Problem 2.

Given an undirected graph G = (V ,E ), and a cost function
c : E → R+, partition V into 2 parts (S , (̄S)) such that the total
cost of edges between those parts is maximized.

I The current best known algorithm (Goemans and Williamson 1995)
uses semidefinite programming and gives a 0.878-approximation.
This is optimal under the Unique Games conjecture (UGC).

I Furthermore if α ≥ 16/17 ≈ 0.941, then P = NP!
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Max-Cut Problem

Figure 3.1: The maximum cut problem. The goal is to find a set of red
and blue vertices whose union is V, such that the weight of the edges
crossing between them is maximized. In this instance ce = 1, ∀e ∈ E , so
the problem reduces to finding two sets so that the number of crossing
edges are maximized.
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Maximum Cut

I Goal:Given an undirected graph G = (V ,E ), and weights wij for all
e = (i , j) ∈ E , find the cut (S , S̄) maximizing the cost of cut edges.

I Let yi = 1 if i ∈ S , and yi = −1 if i ∈ S̄ . ILP is given as:

ILP

maximize
1

2

∑
(i ,j)∈E

wij(1− yiyj)

subject toyi ∈ {−1, 1} for all i ∈ V

I Models correctly, since for any edge (i , j) in the cut 1
2 (1− yi .yj) = 1

thus accounted once. For non-cut edge 1− (yi .yj) = 0, hence not
accounted.
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Maximum Cut (SDP relaxation)

-The corresponding SDP relaxation is:
VP

maximize
1

2

∑
(i ,j)∈E

wij(1− vi .vj)

subject to vi .vi = 1 ∀i ∈ [n].

I Relaxation since given a solution y = (y1, y2, ...yn), one can set for all i,
vi = (yi , 0, ...0) and get a solution of the same value.

I Intuitively, VP optimizes over a ‘greater’ range of values.
I val(VP) ≥ OPT , where OPT is an optimal value of the max-cut.
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Rounding Algorithm using random hyperplane

Randomized Rounding for Max-Cut:

i Pick a random vector r = (r1, ..., rn) ∈ Rn s.t. ∀i , ri ∼ N(0, 1).

ii For all i ∈ V , put i in S if r .vi ≥ 0, and in S̄ otherwise.

-Can be solved with an additive error of ε, time polynomial in n
and log(1/ε).
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Rounding Algorithm(Analysis)

Fact 3.

The normalization of r , i.e. r
‖r‖ is uniformly distributed over the unit

sphere in Rn. Moreover, for any 2 vectors x , y , the distribution of r .x
and r .y are independent iff x , y are orthogonal.

Theorem 4.

The probability that any edge (i , j) is in the cut is 1
πarccos(vi .vj).

Proof Omitted!
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Randomized Rounding (illustration)

Figure 3.2: The inner products rp.vi and rp.vj have opposite signs iff r lies in the
two sectors subtending angle θ.
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SDP at work

Figure 3.3: Vertices connected by an edge in G are likely to be separated far
apart. Random hyperplane cuts such an edge whp.
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Analysis

Fact 5.
1
πarccos(x) ≥ 0.878.12 (1− x) for x ∈ [−1, 1].

-Let Xe be the r.v which is 1 if e is in the cut and 0 otherwise. Then,

E [
∑

e=(i ,j)∈E

ceXe ] =
∑

e=(i ,j)∈E

ce .Pr [Xe = 1]

=
∑

e=(i ,j)∈E

ce
1

π
arccos(vi .vj)

≥
∑

e=(i ,j)∈E

ce .0.878
1

2
(1− vi .vj)

= 0.878.val(VP) ≥ 0.878.OPT .

-Thus, the expected value of the cut is within 0.878 of the optimal.
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A deterministic 1
2-approximation Algorithm

Derandomized Max-Cut (G=(V,E)):

1: C = {v1} . C denotes the cut which maximizes |E (C , C̄ )|
2: for i = 2, ..., |V | do
3: if cut-edges(C , vi ) ≤ degree(vi ) then
4: C = C

⋃
{vi}. . cut-edges(C , vi ) denotes the number

of cut edges incident to vi and C .

5: Return C

Omer Wasim Algorithms for Graph Theoretic Problems
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Empirical Results

Setup:

1) Run the Max-Cut SDP and Derandomized Max-Cut on each data
set and compare the performance.

2) For development, use MATLAB and CVX. Data sets from many
types of real world networks.

3) Due to memory constraints, size restricted to 230 nodes.

3) For algorithm A, on an input I , compute the following normalized
ratio, βA :

βIA =
#cut edges output by A on I

|E |
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Empirical Results

I Let BDR and BSDP denote the values computed.

I It follows that BDR ∈ [0.5, 1].

I If OPT(MC) is an algorithm to compute Max-Cut exactly, then:

0.5 ≤ βDR ≤ βOPT (MC) ≤ 1 ∀I .

I Intuitively, if βSDP is not too small as compared to βDR the
Max-Cut SDP algorithm is ‘good enough’.

I Note that 1− βDR is an upper bound of the difference between
βOPT (MC) and βDR .
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I Intuitively, if βSDP is not too small as compared to βDR the
Max-Cut SDP algorithm is ‘good enough’.

I Note that 1− βDR is an upper bound of the difference between
βOPT (MC) and βDR .
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Key results

I The average difference, βDR − βSDP across 46 graph data sets was
≈ 0.17.

I On one data set, βSDP > βDR =⇒ on adversarial inputs, Max-Cut
SDP might fare better.

I Note that Max-Cut SDP implemented still gives a randomized
approximation. Possible to de-randomize to get deterministic
0.878-approximation.

I Overall, the derandomized version is more efficient in practice.
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Plot of βDR , βSDP

Figure 3.4: As can be seen, Derandomized Max-Cut fares well on nearly all
instances. However,for most inputs the difference between the values is small.
As claimed, βDR ≥ 0.5
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Plot of βDR − βSDP

Figure 3.5: The mean difference is about 0.17 shown as the horizontal line,
while the highest difference is about 0.4.
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The Uniform Sparsest Cut Problem

Problem 6 (Uniform Sparsest Cut).

Given an undirected graph G = (V ,E ), costs ce ∀e ∈ E , and a
single unit demand between all s, t ∈ V , find a set of vertices
minimizing

ρ(S) =

∑
e∈δ(S) ce

|S ||V − S |
.

If all costs ce = 0, then the goal is to minimize (over all S ⊆ V :

ρ(S) =
|E (S , S̄)|
|S ||V − S |
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Finding sparse cuts in a graph

Figure 4.1: Finding a sparse cut is equivalent to finding a set S
minimizing cut edges while ensuring ‘balance’.
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Relation to edge-expansion

I Claim: The uniform sparsest cut can be used to approximate the
edge expansion within factor 2.

I The edge expansion of a cut S ⊆ V for |S | ≤ n/2 is φ(S) =
δ(S)

|S |
.

I For graph G , φ(G )=minS⊆V ,|S |≤n/2 φ(S). Since n
2 ≤ |V − S | ≤ n,

the claim follows.

-We briefly discuss the 3 algorithms (which give increasingly better
approximations).
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The spectral approach

I Use the normalized laplacian matrix, L to compute the second eigenvalue and
eigenvector. L is defined to be:

L = I − D−1/2AD−1/2

where A is the adjacency matrix and Dii = di ∀i ∈ V , di is the degree of i in V .

I Let Φ(G ) be the graph conductance defined as:

Φ(G ) = min
S :|S|≤|V |/2

Φ(S) = min
S:vol(S)≤vol(G)/2

|E (S , S̄)|
vol(S)

= min
S:vol(S)≤vol(G)/2

|E (S , S̄)|∑
v∈S dv

I If λ2 is the second eigenvalue of L, then from Cheeger’s inequalities:
λ2
2 ≤ Φ(G ) ≤

√
2λ2.
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Fiedler’s spectral algorithm

I Given the eigenvector x2 corresponding to λ2, the second eigenvalue, finds
a cut (S , S̄) such that:

min{Φ(S),Φ(S̄)} ≤
√

2λ2 ≤ 2
√

Φ(G ),

I Time complexity: O(|E |+ |V |log |V |).

I Spectral algorithm (G = (V ,E ), x2):

1: Sort v ∈ V according to the entries in x2.
2: Output the cut which minimizes Φ(v1, .., vk) for k = 1, .., n − 1.

I Good approximation for graphs of constant expansion.

I Since φ(G ),Φ(G ) and ρ(G ) are inter-reducible, the algorithm gives a good
‘sparse’ cut.

Omer Wasim Algorithms for Graph Theoretic Problems



Introduction
Approximation Algorithms

The Maximum Cut Problem
Sparsest Cut

Conclusion
References

Introduction to Sparsest Cut
Spectral Algorithm
Leighton-Rao (LR) Algorithm
ARV Algorithm for Sparsest Cut
Empirical Results for Sparsest Cut

Fiedler’s spectral algorithm

I Given the eigenvector x2 corresponding to λ2, the second eigenvalue, finds
a cut (S , S̄) such that:

min{Φ(S),Φ(S̄)} ≤
√

2λ2 ≤ 2
√

Φ(G ),

I Time complexity: O(|E |+ |V |log |V |).

I Spectral algorithm (G = (V ,E ), x2):

1: Sort v ∈ V according to the entries in x2.
2: Output the cut which minimizes Φ(v1, .., vk) for k = 1, .., n − 1.

I Good approximation for graphs of constant expansion.

I Since φ(G ),Φ(G ) and ρ(G ) are inter-reducible, the algorithm gives a good
‘sparse’ cut.

Omer Wasim Algorithms for Graph Theoretic Problems



Introduction
Approximation Algorithms

The Maximum Cut Problem
Sparsest Cut

Conclusion
References

Introduction to Sparsest Cut
Spectral Algorithm
Leighton-Rao (LR) Algorithm
ARV Algorithm for Sparsest Cut
Empirical Results for Sparsest Cut

Fiedler’s spectral algorithm

I Given the eigenvector x2 corresponding to λ2, the second eigenvalue, finds
a cut (S , S̄) such that:

min{Φ(S),Φ(S̄)} ≤
√

2λ2 ≤ 2
√

Φ(G ),

I Time complexity: O(|E |+ |V |log |V |).

I Spectral algorithm (G = (V ,E ), x2):

1: Sort v ∈ V according to the entries in x2.
2: Output the cut which minimizes Φ(v1, .., vk) for k = 1, .., n − 1.

I Good approximation for graphs of constant expansion.

I Since φ(G ),Φ(G ) and ρ(G ) are inter-reducible, the algorithm gives a good
‘sparse’ cut.

Omer Wasim Algorithms for Graph Theoretic Problems



Introduction
Approximation Algorithms

The Maximum Cut Problem
Sparsest Cut

Conclusion
References

Introduction to Sparsest Cut
Spectral Algorithm
Leighton-Rao (LR) Algorithm
ARV Algorithm for Sparsest Cut
Empirical Results for Sparsest Cut

Fiedler’s spectral algorithm

I Given the eigenvector x2 corresponding to λ2, the second eigenvalue, finds
a cut (S , S̄) such that:

min{Φ(S),Φ(S̄)} ≤
√

2λ2 ≤ 2
√

Φ(G ),

I Time complexity: O(|E |+ |V |log |V |).

I Spectral algorithm (G = (V ,E ), x2):

1: Sort v ∈ V according to the entries in x2.
2: Output the cut which minimizes Φ(v1, .., vk) for k = 1, .., n − 1.

I Good approximation for graphs of constant expansion.

I Since φ(G ),Φ(G ) and ρ(G ) are inter-reducible, the algorithm gives a good
‘sparse’ cut.

Omer Wasim Algorithms for Graph Theoretic Problems



Introduction
Approximation Algorithms

The Maximum Cut Problem
Sparsest Cut

Conclusion
References

Introduction to Sparsest Cut
Spectral Algorithm
Leighton-Rao (LR) Algorithm
ARV Algorithm for Sparsest Cut
Empirical Results for Sparsest Cut

Leighton-Rao’s LP relaxation

I Uses a linear programming relaxation and relaxes indicator functions to
arbitrary semimetrics.

I If 1S(u) = 1 whenever u ∈ S , then

ρ(S) =
|E (S , S̄)|
|S ||S̄ |

=

∑
(u,v)∈E |1S(u)− 1S(v)|∑
u∈S ,v∈S̄ |1S(u)− 1S(v)|

I Note that if dS(u, v) = |1S(u)− 1S(v)|, then d is a semimetric.

I LR: Relax the indicator function to arbitrary semimemtrics.

min
d :d is a semimetric

∑
(u,v)∈E d(u, v)∑
u,v∈V d(u, v)

I The denominator in LP is normalized to 1.
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Leighton-Rao’s LP relaxation

I LP

minimize
∑

(u,v)∈E

duv

subject to
∑
u,v∈S

duv = 1

duv ≤ duw + dw ,v ∀u, v ,w ∈ V

du,v ≥ 0 ∀u, v ∈ V
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Leighton-Rao’s O(log n) approximation

Theorem 7 (On the equivalence, and existence of f ).

ρ(G ) = min
S

∑
(u,v)∈E |1S(u)− 1S(v)|∑
u∈S ,v∈S̄ |1S(u)− 1S(v)|

= inf
m,f :V→Rn

∑
u,v∈E ‖f (u)− f (v)‖1∑

u∈S,v∈S̄ ‖f (u)− f (v)‖1

for some f ,m.

-Now apply Bourgain’s theorem d on the semimetric to find f ,m.
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Leighton-Rao’s O(log n) approximation

Theorem 8 (O(log n) approximation).

Given distances duv for all u, v ∈ V , one can find an embedding in
polynomial time f : V → Rm such that, with high probability for all
u, v ∈ V

‖f (u)− f (v)‖1 ≤ duv ≤ O(log n) ‖f (u)− f (v)‖1

yielding an O(log n) approximation guarantee for the USC.

-Uses the constructive proof of Bourgain’s theorem to generate
m = log 2(n) subsets to construct a Frechet embedding.

-Outputs the sparsest cut by sorting vertices along the minimum
dimension of their l1 distance.
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ARV Algorithm (STOC ’04)

I Major contribution: Algorithm to generate well separated sets.

I The algorithm is tight for the n dimensional hypercube within
constant factor.

I Uses and SDP relaxation combined with the triangle inequality for
l2
2 norm.
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SDP relaxation for Sparsest Cut

I SDP Relaxation:

minimize
1

n2

∑
e=(i ,j)∈E

ce ‖vi − vj‖2

subject to
∑

i ,j∈V :i 6=j

‖vi − vj‖2 = n2

‖vi − vj‖2 ≤ ‖vi − vk‖2 + ‖vk − vj‖2 ∀i , j , k ∈ V

vi ∈ Rn ∀i ∈ V .
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Ideas behind the Algorithm:

I Map the vertices to points on the unit sphere in Rn minimizing the
sum of the squares of the edge lengths while restricting the the
square distance between the average pair of points to a constant.

I Given such points, one can find almost disjoint ‘antipodal’ sets, L
and R which are ‘well separated’.

I Choose a random distance and output the sparsest cut by
considering all points within distance r of L.

I Uses results from measure concentration. Proofs are long.
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Preliminaries

Definition 9 (Closed ball around i).

Let i ∈ V . Then the ball of radius r around v is given by
B(i , r) = {j ∈ V : d(i , j) ≤ r}. Note that d(i , j) = ‖vi − vj‖2.
Also known as the l2

2 metric, the square of the usual Euclidean
metric.

Definition 10 (∆-Separated Sets).

Let d(i , S) = minj∈Sd(i , j). Sets S ,T are ∆-separated if

∀i , j ∈ ‖vi − vj‖2 ≥ ∆.

Definition 11 (α−large sets).

Sets L,R are α−large if |L| ≥ α.n, |R| ≥ α.n.
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Sets L,R are α−large if |L| ≥ α.n, |R| ≥ α.n.
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Algorithm to generate well-separated sets

Algorithm (Sparsest Cut via Fat-Hyperplane Rounding)

if there is an i ∈ V st |B(i , 1/4)| ≥ n/4 then
L′ = B(i , 1/4)

else
Pick o ∈ V which maximizes |B(o, 4)|
Pick a random vector r.
Let L = {i ∈ V : (vi − vo).r ≥ σ}, R = {i ∈ V : (vi − vo).r ≤ −σ}
Let L′ = L,R ′ = R
while there exists i ∈ L′, j ∈ R ′ st d(i , j) ≤ ∆ do

Remove i , j from L′,R ′ resp.

Sort i ∈ V in non-dec order of d(i , L′) to get i1, .., in.
Return Sk = {i1, i2, .., ik} which minimizes p(Sk), 1 ≤ k ≤ n.
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Key Theorems(without proof)

Theorem 12 (Large-enough L,R).

If there is no i ∈ V st |B(i , 1/4)| ≥ n
4 , then with constant

probability, L,R are α-large for some constant α.

Theorem 13 (Large-enough and well separated L′,R ′).

If L,R are α-large, then with constant probability, L′,R ′ are α/2
large, and ∆-separated where ∆ = C/

√
log n for some C .

Theorem 14 (Leading to proof of O(
√

log n) guarantee).

A cut S st L ⊆ S ⊆ V − R can be found st.

ρ(S) ≤
∑

e=(i,j)∈E ce‖vi−vj‖2∑
i∈L,j∈R‖vi−vj‖

2 .
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Proof sketch of O(
√
log n) guarantee

From theorem 17, once such a cut S has been found, we have

Proof of O(
√

log n) guarantee

Note that, ∑
i ,j∈V :i 6=j

‖vi − vj‖2 ≥
∑

i∈L,j∈R
‖vi − vj‖2

≥ Ω(n2/
√

log n).

Then,

ρ(S) ≤ O(
√

log n)
1

n2

∑
e=(i ,j)∈E

‖vi − vj‖2

≤ O(
√

log n).OPT .

The last inequality follows from the SDP relaxation.
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Experimental Setup

I MATLAB was used to implement all 3 algorithms.

I CVX, a package for specifying and solving convex programs was
used in the implementation of Leighton-Rao and ARV algorithms.

I A total of 54 data sets were used from a wide variety of networks
including biological, infrastructure, transportation,
social,ecological, web, dynamic and brain networks.

I All data sets were obtained from http://networkrepository.com/

I We restricted the size of the graphs to about 60 nodes so that
every algorithm could terminate within 15 minutes with a feasible
solution.

I All experiements were run on a standard Intel Core i5 Proces-sor
with dual processing capability (@3.2 GHz) and 4 GB of RAM.

Omer Wasim Algorithms for Graph Theoretic Problems



Introduction
Approximation Algorithms

The Maximum Cut Problem
Sparsest Cut

Conclusion
References

Introduction to Sparsest Cut
Spectral Algorithm
Leighton-Rao (LR) Algorithm
ARV Algorithm for Sparsest Cut
Empirical Results for Sparsest Cut

Our results

I Let uscSP , uscLR and uscARV denote the value of the uniform
sparsest cut returned by the algorithms SP, LR and ARV.

I O(
√

log n) is still small for our problem instances and value of the
constants are not accounted for, hence performance of ARV not
much different from LR.

I ARV performed better on only some instances while on most
others, it either output the same value(of USC) as LR or slightly
higher.

I SP was the fastest-taking about 10-40 seconds. For modest sized
inputs LR and ARV took 1-2 minutes, but for largest ones, about
10-15 minutes.
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Our results

I The error between all 3 algorithms is small =⇒ for most real
world instances, all algorithms perform satisfactorily.

I SP is useful where the graph has expansion bounded by a constant,
i.e Φ(G ) = Θ(1). For most real world data sets, we observe this is
the case.

I On most instances, uscLR ≤ min{uscSP , uscARV }.
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Our results

I uscARV ≤ uscSP for more than 60% for the instances. SP does
better than LR on very few inputs while ARV is worse than LR on
roughly 60% of the instances.

I The average differences are as follows:

uscSP − uscLR
#ofinstances

= 0.0136 ;
uscARV − uscLR

#ofinstances
= 0.0187;

uscARV − uscSP
#ofinstances

= 0.0051.
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Plot of Overall performance

Figure 4.2: Note in particular how each of the 3 algorithms does not perform
much worse than the rest.
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Plot of SP vs LR

Figure 4.3: SP does strictly better than LR for exactly 4 instances. The average
difference is small while the maximum difference is bounded by roughly 0.12.
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Plot of ARV vs LR

Figure 4.4: LR clearly does better than ARV in most instances. This is also
reflected by the greater average difference than in Figure 6.4. The maximum
difference is bounded by about 0.12
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Plot of ARV vs SP

Figure 4.5: ARV does better than SP on most instances. However, the average
difference is positive but small.
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Takeaways

I Difficult to say which algorithm is truly the best among all.

I If running time is the concern, then SP quite well and outputs a
cut of value which is close to both the LR and the ARV algorithm.

I However, if one wants the best cut and is willing to settle for a
trade-off on running time, then either LR or ARV should be good
choices.

I As n increases, both LR and ARV would take quite a significant
amount of time with current implementation.

I Hence more efficient implementations need to be developed.
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Future directions

I Research the usefulness of the cut-matching game and the
multiplicative weights algorithm for solving USC problem as
presented in AHK(2012).

I Research the usefulness of single-commodity framework for the
USC problem presented in KRV(2009), and Orecchia et al (2008).

I Improve constants in the algorithms/reduce width of certain
constraints, etc.
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Thank you!

Q/A session.

Omer Wasim Algorithms for Graph Theoretic Problems



Introduction
Approximation Algorithms

The Maximum Cut Problem
Sparsest Cut

Conclusion
References

References

Arora, Sanjeev, Satish Rao, and Umesh V. Vazirani (2004). “Expander flows, geometric embeddings and graph partitioning”. In:
Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004. Ed. by
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